Convergence and norm estimates of Hermite interpolation at zeros of Chevyshev polynomials

نویسندگان

  • Kamel Al-Khaled
  • Marwan Alquran
چکیده

In this paper, we investigate the simultaneous approximation of a function f(x) and its derivative [Formula: see text] by Hermite interpolation operator [Formula: see text] based on Chevyshev polynomials. We also establish general theorem on extreme points for Hermite interpolation operator. Some results are considered to be an improvement over those obtained in Al-Khaled and Khalil (Numer Funct Anal Optim 21(5-6): 579-588, 2000), while others agrees with Pottinger's results (Pottinger in Z Agnew Math Mech 56: T310-T311, 1976).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Hermite and Hermite-Fejér Interpolation of Higher Order for Freud Weights

We investigate weighted Lp(0 < p <.) convergence of Hermite and Hermite– Fejér interpolation polynomials of higher order at the zeros of Freud orthogonal polynomials on the real line. Our results cover as special cases Lagrange, Hermite– Fejér and Krylov–Stayermann interpolation polynomials. © 2001 Academic Press

متن کامل

Mean convergence of Lagrange interpolation for Freud’s weights with application to product integration rules

The connection between convergence of product integration rules and mean convergence of Lagrange interpolation in L, (1 <p < 00) has been thoroughly analysed by Sloan and Smith [37]. Motivated by this connection, we investigate mean convergence of Lagrange interpolation at the zeros of orthogonal polynomials associated with Freud weights on R. Our results apply to the weights exp(-x”/2), m = 2,...

متن کامل

Hermite and Hermite-Fejér interpolation for Stieltjes polynomials

Let wλ(x) := (1−x2)λ−1/2 and P (λ) n be the ultraspherical polynomials with respect to wλ(x). Then we denote by E (λ) n+1 the Stieltjes polynomials with respect to wλ(x) satisfying ∫ 1 −1 wλ(x)P (λ) n (x)E (λ) n+1(x)x dx { = 0, 0 ≤ m < n+ 1, = 0, m = n+ 1. In this paper, we show uniform convergence of the Hermite–Fejér interpolation polynomials Hn+1[·] and H2n+1[·] based on the zeros of the Sti...

متن کامل

gH-differentiable of the 2th-order functions interpolating

Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...

متن کامل

On an Interpolation Process of Lagrange–hermite Type

Abstract. We consider a Lagrange–Hermite polynomial, interpolating a function at the Jacobi zeros and, with its first (r−1) derivatives, at the points ±1. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator in certain suitable weighted L-spaces, 1 < p < ∞, proving a Marcinkiewicz inequality involving the derivative of the polynomial at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016